Given:
∫f(x)dx=g(x)
Required: ∫x5f(x3)dx
Use substitution:
Let u=x3⇒du=3x2dx⇒dx=du3x2
Now rewrite the integral:
∫x5f(x3)dx=∫x5f(u)⋅du3x2=13∫x3f(u)du
But x3=u, so:
13∫uf(u)du
Now integrate by parts or use the identity:
∫uf(u)du=ug(u)−∫g(u)du
Final answer:
∫x5f(x3)dx=13[x3g(x3)−∫g(x3)⋅3x2dx]=x3g(x3)−∫x2g(x3)dx
∫x5f(x3)dx=x3g(x3)−∫x2g(x3)dx
Online Test Series,
Information About Examination,
Syllabus, Notification
and More.
Online Test Series,
Information About Examination,
Syllabus, Notification
and More.